Hacking

KNOB attack threatens over a billion Bluetooth-enabled devices

A vulnerability tracked as CVE-2019-9506 and referred as Key Negotiation of Bluetooth (KNOB) attack could allow attackers to spy on encrypted connections.

Researchers at the Center for IT-Security, Privacy and Accountability (CISPA) found a new Bluetooth vulnerability, referred as Key Negotiation of Bluetooth (KNOB) attack, that could allow attackers to spy on encrypted connections.

The vulnerability, tracked as CVE-2019-9506, resides in the way ‘encryption key negotiation protocol’ lets two Bluetooth Basic Rate/Enhanced Data Rate (also known as “Bluetooth Classic“) devices choose an entropy value for encryption keys while establishing a connection.

An attacker in close proximity to the victim’s device could trigger the vulnerability to intercept or manipulate encrypted Bluetooth traffic between two paired devices.

“The encryption key length negotiation process in Bluetooth BR/EDR Core v5.1 and earlier is vulnerable to packet injection by an unauthenticated, adjacent attacker that could result in information disclosure and/or escalation of privileges.” reads the advisory published by the CERT/CC “This can be achieved using an attack referred to as the Key Negotiation of Bluetooth (KNOB) attack, which is when a third party forces two or more victims to agree on an encryption key with as little as one byte of entropy. Once the entropy is reduced, the attacker can brute-force the encryption key and use it to decrypt communications.”

The Bluetooth Classic supports encryption keys with entropy between 1 and 16 bytes/octets. The experts discovered that the negotiation of the entropy value over Link Manager Protocol (LMP) is not authenticated and lack of encryption allowing attackers to hijack it over-the-air.

When two Bluetooth devices attempt to establish an encrypted connection, they must pair with each other and establish a link key that is used to generate the encryption key. After authenticating the link key, the first device proposes that the use of 16 bytes of entropy. The second device can either accept this value, reject it, or propose a smaller value (for example, because it is not able to manage a large number of bytes proposed by the first device). After proposing a smaller amount, the frist device can accept it and request to activate link-layer encryption.

An attacker could force the two devices to use a smaller number of bytes of entropy. To do it, the attacker could intercept the proposal request sent by the first device to the second one, and change the number with a Number equal to 1 byte, then, the second device would accept this value.

The attacker could then intercept the acceptance message sent by the second device and change the entropy proposal to 1 byte, which the first one would likely accept. Thus, both devices would accept N and inform the Bluetooth hosts that encryption is active, but at this point, it could be easier for the attackers to brute-force the negotiated encryption keys.

“An unauthenticated, adjacent attacker can force two Bluetooth devices to use as low as 1 byte of entropy. This would make it easier for an attacker to brute force as it reduces the total number of possible keys to try, and would give them the ability to decrypt all of the traffic between the devices during that session.” reads the security advisory.

Once the attacker has obtained the key, it can monitor and manipulate the Bluetooth traffic in real-time, even if it is encrypted.

“For an attack to be successful, an attacking device would need to be within wireless range of two vulnerable Bluetooth devices that were establishing a BR/EDR connection.  If one of the devices did not have the vulnerability, then the attack would not be successful.  The attacking device would need to intercept, manipulate, and retransmit key length negotiation messages between the two devices while also blocking transmissions from both, all within a narrow time window.  If the attacking device was successful in shortening the encryption key length used, it would then need to execute a brute force attack to crack the encryption key.  In addition, the attacking device would need to repeat the attack each time encryption gets enabled since the encryption key size negotiation takes place each time.” reads the advisory released by Bluetooth.com

“In addition, since not all Bluetooth specifications mandate a minimum encryption key length, it is possible that some vendors may have developed Bluetooth products where the length of the encryption key used on a BR/EDR connection could be set by an attacking device down to a single octet.” added the advisory.

The experts tested the KNOB attack against more than 14 Bluetooth chips from different vendors such as Intel, Broadcom, Apple, and Qualcomm. The result is that all the chips accept 1 byte of entropy except the Apple W1 chip that accepts (at least) 7 bytes of entropy.

Further technical details are reported in the research paper published by the experts.

To mitigate KNOB attack, the maintainers of the Bluetooth specifications recommended device manufacturers and vendors to enforce a minimum encryption key length of 7 octets for BR/EDR connections.

Many vendors have already released security updates to address the flaw, including:

[adrotate banner=”9″] [adrotate banner=”12″]

Pierluigi Paganini

(SecurityAffairs – KNOB attack, hacking)

[adrotate banner=”5″]

[adrotate banner=”13″]

Pierluigi Paganini

Pierluigi Paganini is member of the ENISA (European Union Agency for Network and Information Security) Threat Landscape Stakeholder Group and Cyber G7 Group, he is also a Security Evangelist, Security Analyst and Freelance Writer. Editor-in-Chief at "Cyber Defense Magazine", Pierluigi is a cyber security expert with over 20 years experience in the field, he is Certified Ethical Hacker at EC Council in London. The passion for writing and a strong belief that security is founded on sharing and awareness led Pierluigi to find the security blog "Security Affairs" recently named a Top National Security Resource for US. Pierluigi is a member of the "The Hacker News" team and he is a writer for some major publications in the field such as Cyber War Zone, ICTTF, Infosec Island, Infosec Institute, The Hacker News Magazine and for many other Security magazines. Author of the Books "The Deep Dark Web" and “Digital Virtual Currency and Bitcoin”.

Recent Posts

Experts warn of an ongoing malware campaign targeting WP-Automatic plugin

A critical vulnerability in the WordPress Automatic plugin is being exploited to inject backdoors and…

3 hours ago

Cryptocurrencies and cybercrime: A critical intermingling

As cryptocurrencies have grown in popularity, there has also been growing concern about cybercrime involvement…

5 hours ago

Kaiser Permanente data breach may have impacted 13.4 million patients

Healthcare service provider Kaiser Permanente disclosed a security breach that may impact 13.4 million individuals…

5 hours ago

Over 1,400 CrushFTP internet-facing servers vulnerable to CVE-2024-4040 bug

Over 1,400 CrushFTP internet-facing servers are vulnerable to attacks exploiting recently disclosed CVE-2024-4040 vulnerability. Over…

7 hours ago

Sweden’s liquor supply severely impacted by ransomware attack on logistics company

A ransomware attack on a Swedish logistics company Skanlog severely impacted the country's liquor supply. …

10 hours ago

CISA adds Cisco ASA and FTD and CrushFTP VFS flaws to its Known Exploited Vulnerabilities catalog

CISA adds Cisco ASA and FTD and CrushFTP VFS vulnerabilities to its Known Exploited Vulnerabilities…

20 hours ago

This website uses cookies.