• Home
  • Cyber Crime
  • Cyber warfare
  • APT
  • Data Breach
  • Deep Web
  • Digital ID
  • Hacking
  • Hacktivism
  • Intelligence
  • Internet of Things
  • Laws and regulations
  • Malware
  • Mobile
  • Reports
  • Security
  • Social Networks
  • Terrorism
  • ICS-SCADA
  • POLICIES
  • Contact me
MUST READ

Orange reports major cyberattack, warns of service disruptions

 | 

Hackers leak images and comments from women dating safety app Tea

 | 

Pro-Ukraine hacktivists claim cyberattack on Russian Airline Aeroflot that caused the cancellation of +100 flights

 | 

Seychelles Commercial Bank Reported Cybersecurity Incident

 | 

Microsoft uncovers macOS flaw allowing bypass TCC protections and exposing sensitive data

 | 

U.S. CISA adds Cisco ISE and PaperCut NG/MF flaws to its Known Exploited Vulnerabilities catalog

 | 

Critical WordPress Post SMTP plugin flaw exposes 200K+ sites to full takeover

 | 

Scattered Spider targets VMware ESXi in using social engineering

 | 

China-linked group Fire Ant exploits VMware and F5 flaws since early 2025

 | 

Allianz Life data breach exposed the data of most of its 1.4M customers

 | 

SECURITY AFFAIRS MALWARE NEWSLETTER ROUND 55

 | 

Security Affairs newsletter Round 534 by Pierluigi Paganini – INTERNATIONAL EDITION

 | 

Law enforcement operations seized BlackSuit ransomware gang’s darknet sites

 | 

Arizona woman sentenced for aiding North Korea in U.S. IT job fraud scheme

 | 

Operation CargoTalon targets Russia’s aerospace with EAGLET malware,

 | 

Unpatched flaw in EoL LG LNV5110R cameras lets hackers gain Admin access

 | 

Koske, a new AI-Generated Linux malware appears in the threat landscape

 | 

Mitel patches critical MiVoice MX-ONE Auth bypass flaw

 | 

Coyote malware is first-ever malware abusing Windows UI Automation

 | 

SonicWall fixed critical flaw in SMA 100 devices exploited in Overstep malware attacks

 | 
  • Home
  • Cyber Crime
  • Cyber warfare
  • APT
  • Data Breach
  • Deep Web
  • Digital ID
  • Hacking
  • Hacktivism
  • Intelligence
  • Internet of Things
  • Laws and regulations
  • Malware
  • Mobile
  • Reports
  • Security
  • Social Networks
  • Terrorism
  • ICS-SCADA
  • POLICIES
  • Contact me
  • Home
  • Breaking News
  • Hacking
  • How to compromise PLC systems via stealthy Pin control attacks

How to compromise PLC systems via stealthy Pin control attacks

Pierluigi Paganini November 05, 2016

At the Black Hat Europe 2016 two security researchers devised undetectable attacks that could be used to hack PLC systems avoid being detected.

Security researchers at the Black Hat Europe 2016 have presented a new attack method that could be used to hack programmable logic controllers avoid being detected.

programmable logic controllers are essential components for the monitoring and controlling of physical processes in industrial environments.

In September, the security researcher Ali Abbasi, a Ph.D. candidate in the distributed and embedded system security group at University of Twente, Netherlands, and Majid Hashemi, an independent security researcher, announced the development of an undetectable PLC rootkit. The security duo has presented this week the undetectable PLC rootkit at the Black Hat Europe, held in London.

The security also presented a version of the PLC attack that leverages shellcode.  The title of the presentation if Ghost In The PLC: Designing An Undetectable Programmable Logic Controller Rootkit.

PLC rootkit

The security duo explained their PLC rootkit doesn’t target the PLC logic code like other similar malware making hard its detection.

The researchers explained that the activity of the PLC rootkit will go unnoticed even to systems that monitor the power consumption of the programmable logic controllers.

PLC systems receive input signals from sensors used to monitor the industrial processes and control them via actuators that are connected to I/O pins on an integrated circuit, so-called system on chip (SoC).

The malware interferes with the connection between PLC runtime and logic with the I/O peripherals. The malware resides in the dynamic memory of the industrial component and manipulates the I/O and PLC process, while the PLC is communicating with I/O block composed of output pins that handle the physical control of the process.

The PLC receives signals from the field from the input PINs (i.e. level of the liquid in a pipe) and controls the process through actuators that receive instructions from the output PINs of the PLC (i.e. control of a valve).

Clearly manipulating the I/O signals it is possible to interfere with any industrial process in a stealthy way, and this is what the PLC rootkit does.

“We demonstrate the attack capabilities offered by Pin Control attack, together with the minimal requirements for carrying out the attack.” the researchers wrote in their paper. “We argue that the attack capabilities include blocking the communication with a peripheral, causing physical damage to the peripheral, and manipulating values read or written by legitimate processes. We show how pin control can be exploited both with and without the attacker having kernel-level or root access.”

plc-rootkit

Abbasi and Hashemi have devised two distinct pin control attack methods.

In one case the attacker uses a malicious code to change the pin configuration, switching pins from input to output and vice-versa. In the second attack scenario, the attacker abuses of the multiplexing feature by changing the functionality of the same pin, in this way the programmable logic controller is not able to perform its intended function.

It is important to note that both PIN switch and PIN multiplexing don’t trigger any alert, for this reason, both attacks are able to bypass Intrusion Detection for Embedded Control Systems such as Autoscopy Jr.

The researchers demonstrated it is possible to write a rootkit to carry on the attack, but it requires root access to the programmable logic controller system. In the second scenario, if the attacker has the same privileges as the PLC runtime, he can exploit remotely an RCE vulnerability.

Both attacks can be used to cause a denial-of-service (DoS) condition and to control the physical process connected to the programmable logic controller. However, the experts pointed out that the non-root variant is more efficient, especially from a performance standpoint, but it’s less precise.

“Finally the novelty of our attack lies in the fact that to manipulate the physical process we do not modify the PLC logic instructions or firmware,” continues the researchers. “Instead, we target the interaction between the firmware and the PLC I/O. This can be achieved without leveraging traditional function hooking techniques and by placing the entire malicious code in dynamic memory (in rootkit version of the attack), thus circumventing detection mechanisms such as Autoscopy Jr. and Doppelganger. Additionally, the attack causes the PLC firmware to assume that it is interacting effectively with the I/O while, in reality, the connection between the I/O and the PLC process is being manipulated.”

The researchers believe the majority of programmable logic controllers on the market it vulnerable to their attacks, for this reason, they informed the various vendors.

The paper published by the experts also includes a series of recommendations on how to mitigate these kinds of attack.

[adrotate banner=”9″]

Pierluigi Paganini

(Security Affairs – programmable logic controller rootkit, hacking)


facebook linkedin twitter

Hacking ICS malware PLC PLC rootkit SCADA

you might also like

Pierluigi Paganini July 29, 2025
Orange reports major cyberattack, warns of service disruptions
Read more
Pierluigi Paganini July 29, 2025
Hackers leak images and comments from women dating safety app Tea
Read more

leave a comment

newsletter

Subscribe to my email list and stay
up-to-date!

    recent articles

    Orange reports major cyberattack, warns of service disruptions

    Security / July 29, 2025

    Hackers leak images and comments from women dating safety app Tea

    Data Breach / July 29, 2025

    Pro-Ukraine hacktivists claim cyberattack on Russian Airline Aeroflot that caused the cancellation of +100 flights

    Hacktivism / July 29, 2025

    Seychelles Commercial Bank Reported Cybersecurity Incident

    Data Breach / July 29, 2025

    Microsoft uncovers macOS flaw allowing bypass TCC protections and exposing sensitive data

    Hacking / July 29, 2025

    To contact me write an email to:

    Pierluigi Paganini :
    pierluigi.paganini@securityaffairs.co

    LEARN MORE

    QUICK LINKS

    • Home
    • Cyber Crime
    • Cyber warfare
    • APT
    • Data Breach
    • Deep Web
    • Digital ID
    • Hacking
    • Hacktivism
    • Intelligence
    • Internet of Things
    • Laws and regulations
    • Malware
    • Mobile
    • Reports
    • Security
    • Social Networks
    • Terrorism
    • ICS-SCADA
    • POLICIES
    • Contact me

    Copyright@securityaffairs 2024

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities...
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
    Non-necessary
    Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
    SAVE & ACCEPT